MathCounts Geometry Exercise – 4

  1. ________ In parallogram $ABCD$, $EF\parallel AC$. The area of $\triangle{AED}=72\ cm^2$. Find the area the shaded region in $cm^2$.

  1. ________ In parallelogram $ABCD$, $CE$ intersects with $DA$ at $F$. The area of $\triangle{BEF}$ is $4\ cm^2$. Find the area the shaded region in $cm^2$.

  1. ________ In rectangle $ABCD$, $AD=6\ cm$, $AB=8\ cm$. $AF$ intersects with $DC$ at $E$. The area of $\triangle{BEF}$ is $8\ cm^2$. Find the area of the shaded region in $cm^2$.

  1. ________ Square $CDEF$ is divided into 5 regions of equal area. $AB=3.6\ cm$. Find the area of the square in $cm^2$.

  1. ________ The area of quadrilateral $ABCD$ is $18\ cm^2$. $CD=7\ cm$. Diagonals $AC$ and $BD$ intersect at a point inside $ABCD$. $BD=10\ cm$, $AC=BC$, $\angle{BCA}=90^\circ$. Find the area of $\triangle{ACD}$ in $cm^2$.

  1. ________ $P$ is outside of square $ABCD$. $PB=12\ cm$. The area of $\triangle{APB}$ is $90\ cm^2$. The area of $\triangle{CPB}$ is $48\ cm^2$Find the area of square $ABCD$ in $cm^2$.

  1. ________ $P$ is inside right $\triangle{ABC}$. $BA=BC$. $PB=10\ cm$. The area of $\triangle{ABP}$ is $60\ cm^2$. The area of $\triangle{BPC}$ is $30\ cm^2$. Find the area of $\triangle{ABC}$ in $cm^2$.

  1. ________ In $\triangle{ABC}$, $AB=AC=9\ cm$. $\angle{BAC}=120^\circ$. $P$ is on $BC$ so that $CP=6\ cm$. $Q$ is on $AC$ so that $\angle{CPQ}=\angle{APB}$. Find the area of $\triangle{BPQ}$ in $cm^2$.

  1. ________ The area of $\triangle{ABC}$ is $1\ cm^2$. Extend $AB$ to $D$ so that $AB=BD$. Extend $BC$ to $E$ so that $BC=\dfrac{1}{2}CE$. Extend $CA$ to $F$ so that $CA=\dfrac{1}{3}AF$. Find the area of $\triangle{DEF}$ in $cm^2$.

  1. ________ $G$ is a point outside of square $ABCD$. $AB$ intersects with $GD$ at $E$, $GC$ at $F$. $AB=12\ cm$. $EF=4\ cm$. Find the area of $\triangle{EFG}$ in $cm^2$.

This entry was posted in Geometry, Math Classes, MATHCOUNTS. Bookmark the permalink.