-
Archives
- October 2025
- September 2025
- August 2025
- July 2025
- June 2025
- May 2025
- April 2025
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- May 2021
- April 2021
- March 2021
- January 2021
- December 2020
- November 2020
- October 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
-
Meta
Monthly Archives: November 2023
Geometry Challenge – 14
In the figure as shown, $ABCD$ is a unit square, $E$ is on $BC$, $F$ is on $CD$, $\angle{EAF}=45^\circ$, $\angle{AEB}=70^\circ$. A B C D E F 70° 45° ? A B C D E F G 70° 45° ? (1) … Continue reading
Posted in Geometry
Comments Off on Geometry Challenge – 14
Number Theory Challenge – 2
How many pairs of positive integers $(x,y)$ are there such that $x<y$ and $\dfrac{x^2+y^2}{x+y}$ is an integer which is a divisor of $2835$? BIMC 2018 Click for the solution Solution: Based on the result of Number Theory Challenge – 1, … Continue reading
Posted in Number Theory
Comments Off on Number Theory Challenge – 2
Number Theory Challenge – 1
Let $n=4k+3$ is a prime number and $a^2+b^2\equiv 0\pmod{n}$, prove that $a\equiv b \equiv 0\pmod{n}$. Click for the solution Proof: If $a\equiv 0\pmod{n}$, because $a^2+b^2\equiv 0\pmod{n}$, $b\equiv 0\pmod{n}$. If $a\not\equiv 0\pmod{n}$, because $n$ is a prime number, according to Fermat’s … Continue reading
Posted in Number Theory
Comments Off on Number Theory Challenge – 1