Monthly Archives: May 2024

Algebra Challenge – 3

For integer $n>1$, find the value of $$\dfrac{\sum_{i=1}^{n^2-1}\sqrt{n+\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$$ Click here for the solution. Solution: $$\dfrac{\sum_{i=1}^{n^2-1}\sqrt{n+\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=1+\dfrac{\sum_{i=1}^{n^2-1}\sqrt{n+\sqrt{i}}-\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$$ $=1+\dfrac{\sum_{i=1}^{n^2-1}(\sqrt{n+\sqrt{i}}-\sqrt{n-\sqrt{i}})}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=1+\dfrac{\sum_{i=1}^{n^2-1}\sqrt{(\sqrt{n+\sqrt{i}}-\sqrt{n-\sqrt{i}})^2}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$ $=1+\dfrac{\sum_{i=1}^{n^2-1}\sqrt{2n-2\sqrt{n^2-i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=1+\dfrac{\sqrt{2}\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{n^2-i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$ $=1+\dfrac{\sqrt{2}\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=\boxed{1+\sqrt{2}}$

Posted in Algebra | Comments Off on Algebra Challenge – 3

Circles in a Square – Part 12

As shown in the figure, $ABCD$ is a square, $E$ is the mid-point of $AB$. The circle with its center at $H$ is tangent with $AD$, $AE$ and $DE$. The circle with its center at $F$ is tangent with $BC$, … Continue reading

Posted in Circles in a Square, Geometry | Comments Off on Circles in a Square – Part 12