-
Archives
- October 2025
- September 2025
- August 2025
- July 2025
- June 2025
- May 2025
- April 2025
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- May 2021
- April 2021
- March 2021
- January 2021
- December 2020
- November 2020
- October 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
-
Meta
Category Archives: Trigonometry
A MATHCOUNTS Problem with Multiple Answers 🙂
The following is MATHCOUNTS 2012 National Competition Sprint Round Problem 22: In circle $O$, shown, $OP=2$ units, $PL=8$ units, $PK=9$ units and $NK=18$ units. Points $K$, $P$ and $M$ are collinear, as are points $L$, $P$, $O$ and $N$. What … Continue reading
Posted in Fun Math Facts, Geometry, MATHCOUNTS, Trigonometry
Comments Off on A MATHCOUNTS Problem with Multiple Answers 🙂
Geometry Challenge – 15
In $\triangle{ABC}$, $D$ is a point on $BC$. $\angle{ABC}=100^\circ$, $\angle{BCA}=20^\circ$, $\angle{BAD}=50^\circ$. Prove $AB=CD$. Click here for the proof. Proof 1: Clearly, $\angle{ADC}=150^\circ$, and $\angle{CAD}=10^\circ$. According to the law of sines, we have: $ \dfrac{sin\angle{BCA}}{AB}=\dfrac{sin\angle{ABC}}{AC}$ and $ \dfrac{sin\angle{CAD}}{CD}=\dfrac{sin\angle{ADC}}{AC}$ Therefore $AB=\dfrac{sin\angle{BCA}}{sin\angle{ABC}}AC=\dfrac{sin(20^\circ)}{sin(100^\circ)}AC=\dfrac{2sin(10^\circ)cos(10^\circ)}{sin(80^\circ)}AC=\dfrac{2sin(10^\circ)cos(10^\circ)}{cos(10^\circ)}AC$ $$=2sin(10^\circ)AC$$ … Continue reading
Posted in Geometry, Trigonometry
Comments Off on Geometry Challenge – 15
Trigonometry Challenge – 1 ⭐⭐
Prove that $\ \ \ \ \ \ \ \dfrac{sin 20^\circ}{cos 20^\circ-2\cdot sin 10^\circ}=tan 30^\circ\ \ \ \ \ \ \ \ \ $ Solution Proof: Because $$ sin 10^\circ-sin 10^\circ=0,\ \ \ sin^2 20^\circ+cos^2 20^\circ=1,\ \ \ sin 30^\circ … Continue reading
Posted in Daily Problems, Trigonometry
Comments Off on Trigonometry Challenge – 1 ⭐⭐
Geometry Challenge – 13
$ABCD$ is a square, P is an inner point such that $PA:PB:PC=1:2:3$. Find $\angle{APB}$ in degrees. A B C D P Click here for the solution. Solution 1: As shown in the diagram at the right, link $AC$. Without loss … Continue reading
Posted in Algebra, Geometry, Trigonometry
Comments Off on Geometry Challenge – 13
AIME 2022 II – Problem 15
Two externally tangent circles $\omega_1$ and $\omega_2$ have centers $O_1$ and $O_2$, respectively. A third circle $\Omega$ passing through $O_1$ and $O_2$ intersects $\omega_1$ at $B$ and $C$ and $\omega_2$ at $A$ and $D$, as shown. Suppose that $AB = … Continue reading
Posted in Algebra, Geometry, Trigonometry
Comments Off on AIME 2022 II – Problem 15