Geometry Challenge – 12

Acute $\triangle{ABC}$ is inscribed inside circle centered at $O$. $P$ is on $BC$ and $AP\perp BC$, and $\angle{ACB}>\angle{ABC}$. Prove the following:

  1. $\angle{BAC}+\angle{OBC}=90^\circ$
  2. $\angle{OAP}=\angle{ACB}-\angle{ABC}$
  3. If $\angle{ACB}-\angle{ABC}\ge 30^\circ$, and $MB=MC$, then $MP\gt CP$
  4. If $\angle{ACB}-\angle{ABC}\ge 30^\circ$, then $\angle{BAC}+\angle{POC}<90^\circ$

Click here for the solutions.

This entry was posted in Geometry. Bookmark the permalink.