MASSCOUNTS 2016-2017 – 232
In Circle A, shown here, $\overleftrightarrow{BD}$ is tangent to the circle at B, and major $\overparen{BC\ }$ has measure $230^\circ$. What is $m\angle{CBD}$?
Click here for the solution.
Solution Draw lines $\overline{AB}$ and $\overline{AC}$
$$\begin{align}
&\because major\ \overparen{BC\ }=230^\circ \\
&\therefore minor\ \overparen{BC\ }=360^\circ-major\ \overparen{BC\ }=360^\circ-230^\circ=130^\circ \\
&\therefore m\angle{BAC}=minor\ \overparen{BC\ }=130^\circ \\
&\because\ \overline{AB} = \overline{AC} \\
&\therefore \triangle{ABC}\ is\ isosceles \\
&\therefore m\angle{ABC}=m\angle{ACB}=\dfrac{180^\circ-m\angle{BAC}}{2}=\dfrac{180^\circ-130^\circ}{2}=25^\circ \\
&\because\ \overleftrightarrow{BD}\ is\ tangent\ to\ circle\ A\ at\ B \\
&\therefore\ \overline{AB} \perp \overleftrightarrow{BD} \\
&\therefore m\angle{ABD}=90^\circ \\
&\therefore m\angle{ABC}+m\angle{CBD}=m\angle{ABD}=90^\circ \\
&\therefore m\angle{CBD}=90^\circ-m\angle{ABC}=90^\circ-25^\circ=65^\circ \blacksquare \\
\end{align}
$$