LMT 2021 Team Round – Problem 17

Given that the value of $$\sum_{k=1}^{2021}\dfrac{1}{1^2+2^2+3^2+…+k^2} + \sum_{k=1}^{1010}\dfrac{6}{2k^2-k} + \sum_{k=1011}^{2021}\dfrac{24}{2k+1}$$ can be expressed as $\dfrac{n}{m}$, where $m$ and $n$ are relatively prime positive integers, find $m+n$.

Click here for the solution.
This entry was posted in Algebra. Bookmark the permalink.