Cheat Sheet for Distributing $k$ Balls into $n$ Boxes

Distribution of Restriction
$k\text{ Balls}$ $n\text{ Boxes}$ None $\le 1$ $\ge 1$ $=1$
$distinct$ $distinct$ $$n^k$$ $$(n)_k$$ $$n!S(k,n)$$ $$n!\text{ or }0$$
$identical$ $distinct$ $${n+k-1}\choose k$$ $$n\choose k$$ $${k-1}\choose{n-1}$$ $$1\text{ or }0$$
$distinct$ $identical$ $$\sum_{i=1}^{n}S(k,i)$$ $$1\text{ or }0$$ $$S(k,n)$$ $$1\text{ or }0$$
$identical$ $identical$ $$\sum_{i=1}^{n}P(k,i)$$ $$1\text{ or }0$$ $$P(k,n)$$ $$1\text{ or }0$$

$(n)_k=n(n-1)(n-2)…(n-k+1)=k!{n\choose k}$

$S(k, n)$ is a Stirling number of the second kind:

$$S(k,n)=\dfrac{1}{n!}\sum_{i=0}^{n}(-1)^{i}{{n}\choose{i}}(n-i)^k$$

$P(k, n)$ is the number of partitions of $k$ into $n$ parts

This entry was posted in Combinatorics. Bookmark the permalink.