-
Archives
- January 2026
- December 2025
- November 2025
- October 2025
- September 2025
- August 2025
- July 2025
- June 2025
- May 2025
- April 2025
- March 2025
- February 2025
- January 2025
- December 2024
- November 2024
- October 2024
- September 2024
- August 2024
- July 2024
- June 2024
- May 2024
- April 2024
- March 2024
- February 2024
- January 2024
- November 2023
- October 2023
- September 2023
- August 2023
- July 2023
- June 2023
- May 2023
- April 2023
- March 2023
- February 2023
- January 2023
- December 2022
- November 2022
- October 2022
- September 2022
- August 2022
- July 2022
- May 2022
- April 2022
- March 2022
- February 2022
- January 2022
- December 2021
- November 2021
- October 2021
- September 2021
- August 2021
- July 2021
- May 2021
- April 2021
- March 2021
- January 2021
- December 2020
- November 2020
- October 2020
- June 2020
- May 2020
- April 2020
- March 2020
- February 2020
- January 2020
- December 2019
- November 2019
- October 2019
-
Meta
Category Archives: Algebra
Cyclic System of Equations – 2
Find real solutions for the following equations: $$a+bcd = 2$$ $$b+cda=2$$ $$c+dab=2$$ $$d + abc=2$$ Solution: Because $a+bcd=2$, $b+cda=2$, we have $a+bcd=b+cda$. Factorizing it, we have $$(a-b)(cd-1)=0$$ Therefore either $a=b$ or $cd=1$. Case 1: If $a=b$, we have $$a+ac^2=2$$ $$c+da^2=2$$ … Continue reading
Posted in Algebra
Comments Off on Cyclic System of Equations – 2
AIME 2022 II – Problem 15
Two externally tangent circles $\omega_1$ and $\omega_2$ have centers $O_1$ and $O_2$, respectively. A third circle $\Omega$ passing through $O_1$ and $O_2$ intersects $\omega_1$ at $B$ and $C$ and $\omega_2$ at $A$ and $D$, as shown. Suppose that $AB = … Continue reading
Posted in Algebra, Geometry, Trigonometry
Comments Off on AIME 2022 II – Problem 15
AIME 2017 I – Problem 14
Let $a > 1$ and $x > 1$ satisfy $$\log_a(\log_a(\log_a 2) + \log_a 24 – 128) = 128$$ and $\log_a(\log_a x) = 256$. Find the remainder when $x$ is divided by $1000$. 🔑 Solution: Let $a=2^n$, we have $$log_{2^n}(\log_{2^n}(\log_{2^n}2)+\log_{2^n}24-128)=128$$ $$log_{2^n}(\log_{2^n}2)+\log_{2^n}24-128=2^{128n}$$ … Continue reading
Posted in Algebra
Comments Off on AIME 2017 I – Problem 14
AIME 2017 I – Problem 15
The area of the smallest equilateral triangle with one vertex on each of the sides of the right triangle with side lengths $2\sqrt{3}$, $5$, and $\sqrt{37}$ as shown, is $\dfrac{m\sqrt{p}}{n}$, where $m$, $n$, and $p$ are positive integers, and $m$, $n$, … Continue reading
Posted in Algebra, Geometry, Trigonometry
Comments Off on AIME 2017 I – Problem 15
When did the snow start to fall?
One day sometime before 12 noon, the snow started to fall. A snow plower started to remove snow from the streets at 12 o’clock. In the first hour, it advanced 6 miles; in the second hour, it advanced 3 miles. … Continue reading
Posted in Algebra
Comments Off on When did the snow start to fall?