Algebra Challenge – 2025/10/09

For number pairs $(r_i, c_i)$, $i=1,2,…,n$, where $n\ge 1$, $r_i\ge 0$ and $c_i\ge 0$, they have the following property:
$$\sum_{i=1}^{n}r_i=\sum_{i=1}^{n}c_i=n^2$$ Additionally, there exists a positive value of $k$ so that for every $i$ value,
$i=1,2,…,n$, the following three inequalities hold:
$$r_i\le \dfrac{n^3}{k}\ \ \ \ \ \ \ \ \ \ \ \ \ \ c_i\le \dfrac{n^3}{k}\ \ \ \ \ \ \ \ \ \ \ \ \ \ k\cdot(r_i+c_i)-r_i\cdot c_i\le n^3$$ Find the maximum value of $k$ in terms of $n$.🔑

This entry was posted in Algebra. Bookmark the permalink.