Category Archives: Algebra

Algebra/Geometry Challenge – 1

As shown in the following figure, $D$, $E$, $F$ are on the sides of $\triangle{ABC}$, $AC$, $AB$, and $BC$ respectively. $AE=BE$, $AD=6$, $CD=7$, $BF=2$, $CF=9$. $DEFG$ is a square. The length of $AB$ can be expressed as $\ \ \ … Continue reading

Posted in Algebra, Geometry | Comments Off on Algebra/Geometry Challenge – 1

Algebra Challenge – 3

For integer $n>1$, find the value of $$\dfrac{\sum_{i=1}^{n^2-1}\sqrt{n+\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$$ Click here for the solution. Solution: $$\dfrac{\sum_{i=1}^{n^2-1}\sqrt{n+\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=1+\dfrac{\sum_{i=1}^{n^2-1}\sqrt{n+\sqrt{i}}-\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$$ $=1+\dfrac{\sum_{i=1}^{n^2-1}(\sqrt{n+\sqrt{i}}-\sqrt{n-\sqrt{i}})}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=1+\dfrac{\sum_{i=1}^{n^2-1}\sqrt{(\sqrt{n+\sqrt{i}}-\sqrt{n-\sqrt{i}})^2}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$ $=1+\dfrac{\sum_{i=1}^{n^2-1}\sqrt{2n-2\sqrt{n^2-i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=1+\dfrac{\sqrt{2}\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{n^2-i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}$ $=1+\dfrac{\sqrt{2}\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}{\sum_{i=1}^{n^2-1}\sqrt{n-\sqrt{i}}}=\boxed{1+\sqrt{2}}$

Posted in Algebra | Comments Off on Algebra Challenge – 3

Mathcounts 2017-2018 Handbook Problem 136

In right triangle ABC, with AB = 44 cm and BC = 33 cm, point D lies on side BC so that BD:DC = 2:1. If vertex A is folded onto point D to create quadrilateral BCEF, as shown, what … Continue reading

Posted in Algebra, Geometry | Comments Off on Mathcounts 2017-2018 Handbook Problem 136

Algebra Exercise – Simplify Square Root

Simplify $$\sqrt{\sqrt{9}-\sqrt{8}}$$ Simplify $$\sqrt{\sqrt{4}-\sqrt{3}}$$ Simplify $$\sqrt{\sqrt{25}-\sqrt{24}}$$ Simplify $$\sqrt{\sqrt{49}-\sqrt{48}}$$ Simplify $$\sqrt{\sqrt{64}-\sqrt{63}}$$ Simplify $$\sqrt{\sqrt{225}+\sqrt{224}}$$ Simplify $$\sqrt{\sqrt{16}+\sqrt{15}}$$ Simplify $$\sqrt{\sqrt{5}+\sqrt{4}}$$ Simplify $$\sqrt{\sqrt{81}+\sqrt{80}}$$ Simplify $$\sqrt{\sqrt{121}+\sqrt{120}}$$

Posted in Algebra, Math Classes | Comments Off on Algebra Exercise – Simplify Square Root

MathCounts Training – Number Theory – 6

________ What is the sum of all positive two-digit integers with exactly 12 positive factors? $$ $$ ________ What is the sum of the three numbers less than 1000 that have exactly five positive integer divisors? $$ $$ ________ The … Continue reading

Posted in Algebra, Math Classes, MATHCOUNTS | Comments Off on MathCounts Training – Number Theory – 6